

INES seminar on salinity gradient power

Energy generation and desalination : The REAPower project

Joost Helsen

Brussels, June 20th, 2012

Topics in the presentation of today

Energy generation and desalination : The REAPower project

- » REAPower objectives
- » SGP-RE battery principle and advantage
- » Theoretical effect of SGP-RE battery parameters, indications from
 - » simple resistances in series point of view
 - » Lacey model based calculations
- » Hybrid concept and relation with REAPower
- » REAPower consortium
- » REAPower workplan explained
- » Acknowledgments

REAPower objectives

- » REAPower targets an innovative concept based on the reverse electrodialysis technology. This technology consists of the extraction of the "osmotic energy" from two salt solutions showing a large difference in salt concentration, what is called salinity gradient power (SGP).
- The objective of REAPower is to prove the concept of electricity production through SGP-RE using brine and sea (/brackish) water and to develop the necessary materials, components and processes.
- » Time frame : 4 years ; October 2010 October 2014

REAPower SGP-RE battery

REAPower advantage

The use of

- » highly conductive seawater (e.g. 35 kg/m³) in the LOW compartment
- » even more conductive concentrated brine (e.g. 300 kg/m³) in the HIGH compartment
- creates a low resistance in both the HIGH and LOW battery compartments

As a result:

opportunity to target a low total internal resistance within the SGP-RE battery cell-pairs through the introduction of thinner membranes

Lower, internal battery resistance should significantly promote a higher power density of the SGP-RE battery.

REAPower : theoretical effect of parameters

REAPower : lowering the internal battery resistance

To give a rough idea and in theory, when assuming :

- simplified series of resistances
- AM and CM : specific membrane resistance of 100 $\Omega.cm$
- seawater : 20 Ω.cm (about 50 times lower than fresh water !)
- brine : 2.5 Ω.cm

vision on technology

Theoretical indication of	of the internal cell pai	r resistance optimization window

CM membrane		LOW compartment		AM membrane		HIGH compartment		Total resistance	
(µm)	(Ω.cm²)	(µm)	(Ω.cm²)	(µm)	(Ω.cm²)	(µm)	(Ω.cm²)	(Ω.cm²)	(%)
100	1	200	0.4	100	1	200	0.05	2.45	100
20	0.2	200	0.4	20	0.2	200	0.05	0.85	35
10	0.1	200	0.4	10	0.1	200	0.05	0.65	26
100	1	100	0.2	100	1	200	0.05	2.25	92
50	0.5	100	0.2	50	0.5	200	0.05	1.25	51
20	0.2	100	0.2	20	0.2	200	0.05	0.65	26
10	0.1	100	0.2	10	0.1	200	0.05	0.45	18

REAPower : lowering the internal battery resistance

Power output indications from Lacey model

C U R V E	Mem- brane thick- ness (μm)	LOW compart- ment thickness (µm)	Temp. (°C)	Max Power Output (W/m ²)
1	100	200	25	2.8
2		(Lacey)		6
3	50	200	25	4.9
4	25	200	25	7.9
5	10	200	25	12.6
6	5	200	25	15.7

E. Brauns, Desalination and Water Treatment, 13 (2010) 53–62 E. Brauns, WO/2007/009196 [PCT/BE2006/000078] Vision on technology

REAPower consortium

Participant	Country	Logo
Wirtschaft und Infrastruktur GmbH & Co Planungs-KG (WIP) - materia -	DE	WIP
Vlaamse instelling voor technologisch onderzoek N.V (VITO) + maainte +	BE	
Università Degli Studi Di Palermo (UNIPA) : merenia :	ІТ	UNIVERSITÀ DEGLI STUDI DI PALERMO
Fujifilm Manufacturing Europe B.V. (FUJI) - mare into -	NL	FUJIFILM
Next Technology TECNOTESSILE Società Nazionale di Ricerca r.l. (NTT) - marente -	ІТ	TECHNOLOGY
KEMA NEDERLAND BV (KEMA) - magenetice -	NL	КЕМАҢ
Università della Calabria (DICEM-UNICAL) + morente +	ІТ	LINNESTATIELLACALAERA
The University of Manchester (UNIMAN) - more into -	UK	MANCHESTER 1824
REDstack B.V. + mare into +	NL	
Kraton Polymers, LLC (KRATON) - maxemia -	US	
SolarSpring GmbH + mare with +	DE	SolarSpring

REAPower workplan - status

Membrane Development

Membrane Integrated Spacer Development

Electrochemical engineering / stack design

Process simulation

Lab-scale performance testing

Design, construction, testing of prototype installation

© 2011, VITO NV

A prototype unit of the developed technology will be designed, constructed and tested in the saline pond salt factory

This will allow proving the concept of the SGP-RE technology under real operating conditions using nearly saturated brine in combination with seawater.

Economic evaluation / analysis of perspectives

Main challenges for the coming years

- » Development of thinner membranes in an integrated membrane-spacer design
- » feed pre-filtration at low cost
- » Fouling/scaling issues?
- » prove technology on lab-scale and scale up to fieldtest pilots

Acknowledgements

- » REAPower has received funding from the European Union Seventh Framework Programme (FP7/2007-2013), Future Emerging Technologies for Energy Applications (FET) (Project No FP7-256736)
- The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. The European Commission cannot be held responsible for any use that may be made of the information contained therein.

any further questions :

joost.helsen@vito.be

etienne.brauns@vito.be

Thank you for your attention

